A New Auto-ID Integration Standard Could Play a Big IoT Role

An OPC UA companion standard being developed by AIM and the OPC Foundation represents an important step toward greatly simplifying the integration of identification systems, and could thus become an essential base for the Internet of Things.
By Markus Weinlaender

On the basis of a cooperation agreement, signed by AIM Deutschland and the OPC Foundation during Hannover Messe 2014, a joint workgroup is now developing a common integration standard, which also includes the semantic level. OPC Unified Architecture forms the basis. Though originally intended for automation, this platform has long since progressed to become an important communication standard in other industries and application fields as well. In particular, when it comes to connecting devices at the field level, OPC UA is becoming increasingly more important. The standard is supported by IT companies such as SAP and Microsoft.

All identification methods are to be represented in the new standard: RFID in all its different forms, bar codes, 2D codes and real-time location systems (RTLS). Here, the object-oriented modeling possibilities in OPC UA are particularly important, since device-dependent extensions can be provided as required. For instance, an RTLS detection event can be interpreted just like an RFID event, only supplemented by geographic coordinates.

Figure 2: Simplified integration into different target systems is the objective of the new companion standard for OPC UA.
A second goal is interoperability with PLCs, simple PC applications and complex IT systems. This is the reason that two communication mechanisms are planned—a synchronous call interface, which is more suitable for PLC and PC applications, and an asynchronous event interface, employed in IT systems.

OPC UA ensures broad support for a wide range of application systems by employing different standard technologies, such as Web services, as communication layer. OPC UA is thus no longer tied to a specific operating system platform, unlike its predecessor, OPC Classic. As a consequence, OPC UA can run on Linux, Solaris, QNX, VxWorks and Windows. At the same time, the OPC UA stack is scalable so that powerfully equipped systems (such as ultrahigh-frequency RFID readers, which often feature a dual-processor architecture), as well as very small identification sensors (including those in the high-frequency range) can be supported. Defined profiles determine the specific function scope.

From the perspective of the AIM workgroup, OPC UA offers further important features. One of these is the integrated security concept. For instance, methods for the authentication of clients and servers, as well as users, are planned, which operate on the basis of X.509 certificates. A high degree of privacy is supported by means of symmetric and asymmetric encryption. A second aspect, in particular, with regard to identification systems, is ruggedness—preventing data loss, for instance. Communication failures are quickly detected, without having to wait for timeouts of the underlying protocol layers.

JOIN THE CONVERSATION ON TWITTER
Loading
ASK THE EXPERTS
Simply enter a question for our experts.
Sign up for the RFID Journal Newsletter
We will never sell or share your information
RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations